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An efficient flash procedure using cubic equations of state
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Abstract

A robust and highly efficient procedure to solve the isothermal two-phase flash problem at critical and sub-critical conditions is proposed
in this work. From a calculated initialization, an accelerated successive substitution method is applied until either the solution is achieved
or the change in the Gibbs free energy becomes positive, i.e. the Gibbs energy increases. From this point, an unconstrained optimization
method is applied where the Hessian is kept positive definite and a line search method is implemented to guarantee a decrease in the
Gibbs function. Using cubic equations of state to calculate the required thermodynamic properties has broadly tested the approach. Three
hydrocarbon binary systems and a five-component mixture are used in this work to show the robustness of this procedure. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Prediction of two-phase equilibrium is of great impor-
tance in chemical processes and petroleum related indus-
tries. Knowledge of the equilibrium composition of each
phase is essential in design and simulation of vaporization,
condensation, and multistage separation processes. Compu-
tation of the amount and composition of each phase into
which a given mixture splits is fundamentally based on sat-
isfying the second law of thermodynamics. For a specified
pressure, temperature, and the overall mass of each chem-
ical species, the total Gibbs free energy is minimum with
respect to all possible mass distribution. The problem can be
formulated as a constrained optimization problem by inclu-
sion of the mass balance equation. Alternatively, the mass
balance can be incorporated into the objective function to
formulate the problem as a purely unconstrained optimiza-
tion case. The optimum clearly requires the equality of the
chemical potential that leads to the equality of fugacities.

Iterative solution of the flash represents a computational
problem that may range from slow rate of convergence to no
convergence, particularly in the critical point neighborhood
or near phase boundaries. Convergence may fail when the
initial estimate of the iteration variables is not sufficiently
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accurate or may require a substantial number of iterations
to achieve a solution. In addition, there may exist trivial
values, which satisfy the necessary fugacity conditions and
the mass conservation in the system, but do not correspond
to the minimum in the Gibbs function [1–3].

Using cubic equations of state has proved to be an effec-
tive approach to estimate the required fugacities from given
pressure, temperature and overall molar fractions even at
critical conditions. However, applications of cubic equations
of state may introduce computational problems because of
the existence of spurious roots and undefined derivatives [4].

In this work, the isothermal two-phase flash problem is
addressed and solved at critical and sub-critical conditions.
The problem has been briefly established in this section and
the following reviews the current methods. Then, the pro-
posed procedure is presented. Relevant improvements have
been achieved as shown with the numerical evidence in the
following section. Finally, the conclusions are established.

2. Current methods

Current frameworks to solve the flash problem can be di-
vided into two main types: indirect and direct minimization.

Indirect minimization methods apply numerical tech-
niques to solve the equality of fugacities. They are largely
based on theK-value concept and it is hoped that the result
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will correspond to the minimum Gibbs energy. AK-value is
defined as an equilibrium ratio of mole fractions of a species
in two phases in equilibrium, see for instance [5,25]. Expe-
rience shows that derivative dependent numerical methods
may fail at high pressure and temperature where fugacities
become highly dependent on composition. Successive sub-
stitution (SS) is the most popular method that has proved to
converge to the optimal in most practical cases [5,25]. How-
ever, a good initial estimation is required to avoid undesired
solutions and enhance convergence [6,7]. Various attempts
have been reported to enhance the rate of SS convergence
[8–10].

Direct minimization methods apply numerical methods
for optimization to determine those compositions that sat-
isfy sufficient conditions to a local optimum. Conditions
for a global minimum and their geometric interpretation for
phase equilibrium have been established, for instance, in
[11]. The first Gibbs minimization approach reported used a
steepest descent combined with a linear programming tech-
nique [12]. Both steepest descent and Newton methods were
used in reservoir compositional simulation [8]. The pure
vapor–liquid equilibrium problem is dealt in [13]. Global
optimization techniques have been successfully applied us-
ing solution models [14,15]. Pan and Firoozabadi [16] used
simulated annealing and concluded that it is a very reliable
technique but costly in computational time.

Notwithstanding, the solution to the flash problem may
correspond to either a trivial or a false solution. A trivial
solution typically occurs when the equation of state ends
up in predicting the same composition in both phases. A
false solution occurs when the solution corresponds to a
local minimum. Trivial solution points are false numer-
ical solutions when the Hessian matrix is nonnegative
since they are also local minima. The main difficulty is
that desired solutions are close to the trivial solutions
as the critical point is approached. The best attempt to
avoid undesired solutions has been to provide good initial
guesses [17].

3. Proposed procedure

After analyzing the current methods to solve the flash
problem, the following algorithm has been developed. It
combines both direct and indirect minimization methods.

Algorithm: Flash

1. Select an initial set ofK-values.
2. Using an indirect Gibbs minimization procedure, repeat

n times:
• Calculate the molar composition in each phase.
• If a switching condition has been achieved, go to 3.
• If the convergence criterion has been achieved, go to 4.
• Calculate a new set ofK-values.

3. Until convergence, apply a direct method to minimize the
Gibbs free energy.

4. Perform a stability analysis. Stop if all phases are stable,
otherwise select a new set of mole fractions orK-values
and repeat from 2.

The initialization step is carried out using Mollerup’s cor-
relation [7] that is based on reduced properties,

Kj = Pr exp[5.42(1 − Tr)] (1)

wherePr andTr are reduced pressure and reduced temper-
ature, respectively. This initialization has been successful
not only for vapor–liquid mixtures but also for liquid–liquid
systems.

In Step 2, the molar distribution for each phase is calcu-
lated with a Rachford–Rice type of procedure [18]. An accel-
erated SS method is suggested to calculate the newK-values.
The acceleration technique described by Obut et al. [10] was
found to be the simplest and the most efficient to enhance
the rate of convergence of SS. TheK-values are accelerated
after one iteration using the following expression:

Kj,k+1 = Kj,kr
[1/(1−Kj,k)]
j,k (2)

whereKj,k is the K-value of speciesj during iterationk.
The acceleration factorr is defined as

rj,k =
f I

j,k−1(f
II
j,k − f I

j,k)

f I
j,k(f

II
j,k−1 − f I

j,k−1)
(3)

wheref I
j,k is the fugacity of speciesj in the mixture during

iterationk at phase I.
The above acceleration method improves substantially the

rate of convergence. However, a common weakness of all
acceleration methods is that the function may increase dur-
ing the iteration and eventually converge to a false or trivial
solution; hence the need for stopping the procedure when
sufficient progress has been achieved [19]. The proposed
switch occurs as soon as the Gibbs function increases dur-
ing the current iterate. This is equivalent to the standard
Newton-like convergence criteria based on the gradient of
the objective function to be small enough.

The Newton method has been implemented for the last
part of the proposed scheme since it is normally well behaved
and has order two or quadratic convergence when the start-
ing point is close enough to the solution. It is also unaffected
by the scale of the variables so that scaling is unnecessary.
Newton step is guaranteed to be a descent direction if the
Hessian is positive definite. Hence, a Levenberg–Marquardt
method is used where, in particular, the Hessian is main-
tained symmetric and positive definite [20]. Finally, a line
search backtracking framework is also implemented to safe-
guard that the Gibbs function decreases in each iteration
[21].

Thus, the proposed scheme takes advantages of the best
characteristics of two methods: derivative independence
from SS and quadratic convergence from Newton. Compu-
tational results demonstrate that the method has the same
reliability and nearly the same efficiency in the critical and
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away from the critical point. However, a phase stability
analysis is required to verify if the produced result corre-
sponds to the global optimum. A procedure to carry out the
phase stability analysis has been developed by Michelsen
[2]. If a phase is considered unstable then the phase stabil-
ity procedure detects the composition of the new phase that
decreases the Gibbs function.

4. Examples and discussion

Four examples are considered in this section to demon-
strate the robustness and efficiency of the proposed proce-
dure. The equilibrium state at sub-critical and critical condi-
tions have been computed to show that the procedure works
even for difficult problems.

4.1. Ethane-n-heptane system

The first example is a binary case, which has been out-
lined in [22]. A 26.54 mol% ethane and 73.46 mol% heptane
mixture has been flashed at various pressures and tempera-
tures to reproduce the phase envelope. The Soave equation
of state [23] with a zero binary interaction coefficient is also
used for the sake of consistency with the original reference.
Table 1 shows some of the results. The molar fractiony
refers to the lightest phase since two liquid phases coexist at
supercritical conditions. The number of iterations to achieve
convergence using both pure SS and the proposed approach
is also indicated. Values inside parenthesis indicate itera-
tions used during direct optimization whereas values outside
parenthesis are iterations in either the pure or the accelerated
SS method. A typical pattern is obtained around the critical
point where difficulty normally increases substantially. Suc-
cessive substitution converges to the trivial solution though it
behaves well for this particular mixture when conditions are

Table 1
Flash results for a 26.54 mol% ethane and 73.46%n-heptane mixture at
several temperatures and pressures

P (bar) T (K) Mole fraction ethane Iterations

y x Pure SS This worka

15 430 0.656051 0.102353 12 15(0)
20 430 0.725057 0.148399 7 2(6)
25 430 0.765639 0.193213 6 14(0)
30 430 0.791737 0.236876 7 14(0)
35 450 0.723836 0.247011 Trivial 12(0)
40 500 0.443432 0.215711 Trivial 4(30)
41 500 0.449201 0.224778 Trivial 4(84)
42 500 0.454530 0.233948 Trivial 6(83)
43 500 0.459387 0.243151 Trivial 8(0)
44 500 0.463799 0.252462 Trivial 7(0)
45 500 0.467773 0.261877 Trivial 7(0)

a Values inside parenthesis indicate iterations used during direct opti-
mization whereas values outside parenthesis are iterations in the acceler-
ated SS method.

far from the critical point. The proposed approach achieves
convergence in the whole set of conditions.

4.2. Methane-n-heptane system

A mixture containing 65 mol% methane and 35 mol%
n-heptane is used here at 151 bar and 450 K. The Soave equa-
tion of state [23] with a zero binary interaction coefficient is
also used for the sake of simplicity. The algorithm proposed
in this work saves several iterations that would be required
by a pure SS method. However, the main purpose of this ex-
ample is to show that bounding the acceleration factor has
advantages. Fig. 1 illustrates the behavior of the pure acceler-
ated method in terms of the fraction vaporized and the Gibbs
function. Results in Gibbs function during the first two iter-
ations are not presented to magnify the typical observed ef-
fect: the method behaves well until the Gibbs function starts
increasing. When the Gibbs function increases, the method
takes several iterations to converge and it may end up in false
or trivial solutions. It was also observed here that accelerat-
ing factors became very different to unity. Bounding these
factors to [0.9,1.1] makes the accelerated method converge
in 17 iterations without activating the switch (see Fig. 2).
Using the switch, the method converges in 4(8) iterations.

4.3. Hydrogen sulfide–methane system

An equimolar mixture of H2S–CH4 is used as a third ex-
ample. The flash is carried out using the Soave equation of
state [23] with an interaction coefficient equal to 0.08 [4].
Without phase stability analysis, the flash calculation con-
verges, when the conditions are 40.53 bar and 190 K, using
two iterations with the indirect minimization method and
21 iterations with the direct minimization method. However,
this solution corresponds to false liquid–vapor equilibrium
as detected by the phase stability analysis. A second attempt
using the vapor phase and the new composition obtained
from phase stability gets the appropriate solution in 25 it-
erations. The results of both the false and the true solutions
are given in Table 2.

4.4. Five-component mixture

The five-component mixture in the critical region given
in [8] is used here. The mole fraction of each species in the
system is shown in Table 3. The Peng–Robinson equation

Table 2
Flash results for an equimolar mixture of hydrogen sulfide and methane
at 40.53 bar and 190 K

Solution Vapor fraction Calculated mole fractions

y (H2S) x (CH4)

Real 0.477674 0.0920857 0.873043
False 0.436051 0.0207171 0.979283
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Fig. 1. Accelerated method without bounds for a mixture containing 65 mol% methane and 35 mol%n-heptane at 151 bar and 450 K.

of state [24] with the alpha correction is used to perform
flash calculations at various pressures and a temperature of
388.92 K, which is the calculated critical temperature. All
interaction parameters were assumed to be zero since no

Fig. 2. Bounded accelerated method for a mixture containing 65 mol% methane and 35 mol%n-heptane at 151 bar and 450 K.

further information is provided about them in the original
reference. Table 4 shows the vapor fraction obtained here
as well as the number of iterations required for achieving
the solution in each flash calculation. The iterations inside
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Table 3
Composition of the five-component mixture

Component Mole fraction

Ethane 0.39842
Propane 0.29313
n-Butane 0.20006
n-Pentane 0.07143
n-Hexane 0.03696

Table 4
Flash results for a five-component mixture at 388.92 K

P (bar) Vapor fraction Iterations

Pure SS This worka

41.3685 1.0 9 4(0)
43.0922 0.981459 11 4(14)
44.8159 0.948306 12 4(14)
46.5396 0.912191 13 4(14)
48.2633 0.872244 14 4(14)
49.9869 0.827138 16 4(14)
51.7106 0.0 22 4(14)
53.4343 0.708418 32 4(14)
55.1580 1.0 102 4(14)

a Values inside parenthesis indicate iterations used during direct opti-
mization whereas values outside parenthesis are iterations in the acceler-
ated SS method.

parenthesis indicate those used during direct optimization
whereas the values outside are the iterations in either the
pure or the accelerated SS method. The proposed approach
saves several iterations that the pure SS method would take
to solve those mixtures whose conditions are close enough
to the critical point.

5. Conclusions

A procedure that combines direct and indirect minimiza-
tion techniques for the Gibbs free energy has been proposed
in this work to solve the flash problem. Keeping consistency
with the mass balance in each iteration, the SS method is
accelerated to either produce the solution or to approximate
it so that the Newton, a second order method, ends up in
an optimal answer. The phase stability analysis is used as a
means to produce the global solution. Nevertheless, New-
ton method can be very expensive because of the Hessian

calculation. However, this is preferred and found necessary
to achieve the solution when false solutions become strong
attractors for SS. Modifying Newton method to guarantee a
decrease in the Gibbs function resulted in a computationally
efficient and robust procedure.
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